Investire nell'era dell'intelligenza artificiale
AI, Copertura dei dati, Conformità alle normative, TecnologiaArticoli

Come l'apprendimento automatico può ampliare la copertura dei dati sulla sostenibilità

Pubblicato: 8 gennaio 2022
Modificato: 13 agosto 2025
Punti di forza

Utilizzo di modelli di stima per migliorare il reporting di sostenibilità

La mancanza di copertura dei dati è un ostacolo importante che può essere superato attraverso l'uso del machine learning. Oggi, l'80% delle società quotate in borsa non riporta i dati di sostenibilità richiesti. Ciò significa che, a prescindere dai problemi di affidabilità, solo il 20% delle società quotate in borsa riporta dati completi sulla sostenibilità come base di partenza. Molti fornitori possono quindi accumulare informazioni parziali o mancanti, rendendo difficile la creazione di punteggi coerenti tra i vari peer e potenzialmente influenzando i punteggi verso le aziende che divulgano in modo selettivo, tralasciando i dati sugli indicatori per i quali sono in ritardo. Ecco perché Clarity AI sfrutta le informazioni aziendali disponibili e gli algoritmi di apprendimento automatico per colmare le lacune informative e fornire il quadro più completo possibile.

Dal punto di vista geografico, l'Europa è stata all'avanguardia con le normative nazionali sulla rendicontazione dei cambiamenti climatici per le aziende, che si traduce nella più alta copertura di rendicontazione dei gas serra tra le principali regioni del mondo. Nel frattempo, la Securities and Exchange Commission statunitense sta preparando una normativa specifica sul reporting climatico per il 2022. Si prevede che il tasso di rendicontazione in Nord America raggiungerà quello europeo entro i prossimi due anni.

Copertura della rendicontazione dei gas serra, per regione

Clarity AIModelli di stima

Un'applicazione dell'apprendimento automatico è rappresentata dai nostri modelli di stima. Il principio alla base dei modelli è capire come le metriche di performance della sostenibilità possano essere derivate da altri attributi aziendali. Come input per i modelli di stima viene utilizzata un'ampia gamma di fonti di dati e caratteristiche (informazioni sull'organizzazione), tra cui, ad esempio:

  • In quale settore lavorate?
  • Quali tipi di prodotti e servizi vendete?
  • Siete un produttore?
  • Dove si producono i prodotti? - Dove vendete i vostri prodotti?
  • Quali sono i costi della manodopera?
  • Quali sono le altre caratteristiche ambientali che possono essere correlate alla metrica di interesse? (Questo dipende dalla metrica).
Diagramma di flusso del processo del modello di stima di Clarity AI

I principali elementi di differenziazione della metodologia di Clarity AIsono la stima dell'intensità della metrica, l'uso di dati di attesa per testare l'accuratezza predittiva del modello e la considerazione di effetti non lineari e di interazione. Questi ultimi sono fondamentali per la stima di alcune metriche di sostenibilità come le emissioni di CO2.

Copertura dei dati da parte del PAI

Accedi al rapporto completo qui

Ricerca e approfondimenti

Ultime notizie e articoli

Approfondimenti di mercato

Prospettive 2026 per gli investimenti sostenibili

Mentre l'anno volge al termine, unitevi a noi per una colazione informale: un momento per fermarsi, riflettere e guardare avanti. Insieme: Parteciperemo a un'importante discussione guidata da Lorenzo Saa, Chief Sustainability Officer Clarity AI , per concludere il 2025 con una nota positiva e guardare al futuro. Ospite:...

Approfondimenti di mercato

5 macro-tendenze che caratterizzano gli investimenti sostenibili nel 2026

Il 2026 si preannuncia un anno decisivo per gli investimenti sostenibili. Dal crollo delle principali alleanze "net-zero" alle modifiche normative nell'UE e ai nuovi quadri di rendicontazione che stanno emergendo in tutto il mondo, gli investitori si trovano ad affrontare sia le perturbazioni che le opportunità. Mentre il contesto normativo rimane incerto, il mercato si sta evolvendo verso una maggiore responsabilità, progressi misurabili e un uso più intelligente...

Il clima

L'adattamento climatico è il prossimo mandato degli investitori istituzionali?

Come gli investitori possono integrare l'adattamento climatico nella strategia, gestire il rischio fisico e utilizzare l'intelligenza artificiale per scoprire le opportunità di resilienza.