Investir à l'ère de l'IA
IA, Couverture des données, Conformité réglementaire, TechnologieArticles

Comment l'apprentissage automatique peut étendre la couverture des données sur le développement durable

Publié : 8 janvier 2022
Modifié : 13 août 2025
Principaux enseignements

Utilisation de modèles d'estimation pour améliorer les rapports sur le développement durable

Le manque de données est un obstacle majeur qui peut être surmonté grâce à l'apprentissage automatique. Aujourd'hui, 80 % des entreprises cotées en bourse ne communiquent pas les données requises en matière de développement durable. Cela signifie que, indépendamment des problèmes de fiabilité, seulement 20 % des entreprises cotées en bourse communiquent des données complètes sur le développement durable comme base de référence. De nombreux fournisseurs peuvent alors empiler des informations partielles ou manquantes, ce qui rend difficile la création de scores cohérents entre les pairs et risque de fausser les scores en faveur des entreprises qui communiquent de manière sélective en omettant des données sur les indicateurs pour lesquels elles sont en retard. C'est pourquoi Clarity AI exploite les informations disponibles sur les entreprises et les algorithmes d'apprentissage automatique pour combler les lacunes afin d'obtenir l'image la plus complète possible.

D'un point de vue géographique, l'Europe a ouvert la voie en adoptant des réglementations nationales sur la communication d'informations sur le changement climatique par les entreprises, ce qui se traduit par la couverture la plus élevée en matière de communication d'informations sur les GES parmi les principales régions du monde. Dans le même temps, la Securities and Exchange Commission des États-Unis prépare une réglementation spécifique sur la déclaration des émissions de gaz à effet de serre pour 2022. On s'attend à ce que l'Amérique du Nord rattrape l'Europe d'ici quelques années.

Couverture de la déclaration des GES, par région

Clarity AIModèles d'estimation

Nos modèles d'estimation constituent une application de l'apprentissage automatique. Le principe sous-jacent de ces modèles est de déterminer comment les mesures de performance en matière de durabilité peuvent être dérivées d'autres attributs de l'entreprise. Un large éventail de sources de données et de caractéristiques (informations sur l'organisation) est utilisé comme entrée pour les modèles d'estimation, y compris, par exemple :

  • Quel est votre secteur d'activité ?
  • Quels types de produits et de services vendez-vous ?
  • Êtes-vous un fabricant ?
  • Où fabriquez-vous vos produits ? - Où vendez-vous vos produits ?
  • Quels sont vos coûts de main-d'œuvre ?
  • Quelles sont les autres caractéristiques de l'environnement qui peuvent être corrélées avec la mesure d'intérêt ? (Cela dépend de la métrique).
Organigramme du processus du modèle d'estimation de Clarity AI

La méthodologie de Clarity AIse distingue principalement par l'estimation de l'intensité de l'indicateur, l'utilisation de données d'attente pour tester la précision prédictive du modèle et la prise en compte des effets non linéaires et des effets d'interaction. Ces éléments sont cruciaux pour l'estimation de certaines mesures de durabilité telles que les émissions de CO2.

Couverture des données par le PAI

Accédez au rapport complet ici

Recherche et perspectives

Dernières nouvelles et articles

Aperçu du marché

5 macro-tendances qui façonneront l'investissement durable en 2026

2026 s'annonce comme une année déterminante pour l'investissement durable. De l'effondrement des grandes alliances net-zéro à la remise à plat de la réglementation dans l'UE, en passant par l'émergence de nouveaux cadres de reporting dans le monde entier, les investisseurs sont confrontés à la fois à des perturbations et à des opportunités. Alors que l'environnement réglementaire reste incertain, le marché évolue vers une plus grande responsabilité, des progrès mesurables et une utilisation plus intelligente...

Climat

L'adaptation au climat est-elle le prochain mandat des investisseurs institutionnels ?

Comment les investisseurs peuvent intégrer l'adaptation climatique dans leur stratégie, gérer les risques physiques et utiliser l'IA pour découvrir des opportunités résilientes.

Climat

Des données à la décision : Comment l'IA transforme l'intelligence des risques climatiques pour les investisseurs

Découvrez comment l'intelligence du risque climatique pilotée par l'IA aide les investisseurs à transformer des données fragmentées en informations exploitables qui améliorent la prise de décision.