الاستثمار في عصر الذكاء الاصطناعي
الذكاء الاصطناعي, تغطية البيانات, الامتثال التنظيمي, التكنولوجيا,الذكاء الاصطناعي, تغطية البياناتالمقالات

كيف يمكن للتعلم الآلي توسيع نطاق تغطية بيانات الاستدامة

تم النشر: يناير 8, 2022
تم التعديل 13 أغسطس 2025
الوجبات الرئيسية

استخدام نماذج التقدير لتحسين تقارير الاستدامة

يعد نقص تغطية البيانات عقبة رئيسية يمكن التغلب عليها من خلال استخدام التعلم الآلي. اليوم ، 80٪ من الشركات المدرجة لا تبلغ عن بيانات الاستدامة المطلوبة. وهذا يعني أنه بغض النظر عن قضايا الموثوقية، فإن 20٪ فقط من الشركات المدرجة في البورصة تبلغ عن بيانات شاملة حول الاستدامة كخط أساس. قد يقوم العديد من مقدمي الخدمات بعد ذلك بتكديس المعلومات الجزئية أو المفقودة ، مما يجعل من الصعب إنشاء درجات متسقة عبر أقرانهم وربما انحراف الدرجات نحو الشركات التي تكشف بشكل انتقائي عن طريق ترك البيانات حول المؤشرات التي تأخروا عنها. هذا هو السبب Clarity AI يستفيد من معلومات الشركة المتاحة وخوارزميات التعلم الآلي لملء فجوات المعلومات لإعطاء أكمل صورة متاحة.

من الناحية الجغرافية، كانت أوروبا رائدة في مجال اللوائح الوطنية المتعلقة بالإبلاغ عن تغير المناخ للشركات، والتي تتبلور في أعلى تغطية للإبلاغ عن غازات الدفيئة بين مناطق العالم الرئيسية. وفي الوقت نفسه، تقوم لجنة الأوراق المالية والبورصات الأمريكية بإعداد لائحة محددة للإبلاغ عن المناخ لعام 2022. ومن المتوقع أن يلحق الإبلاغ في أمريكا الشمالية بالمعدل في أوروبا خلال العامين المقبلين.

تغطية الإبلاغ عن غازات الدفيئة، حسب المنطقة

Clarity AIنماذج التقدير

أحد تطبيقات التعلم الآلي هو نماذج التقدير الخاصة بنا. المبدأ الأساسي للنماذج هو معرفة كيف يمكن اشتقاق مقاييس أداء الاستدامة من سمات الشركات الأخرى. يتم استخدام مجموعة واسعة من مصادر البيانات والميزات (معلومات حول المؤسسة) كمدخلات لنماذج التقدير، بما في ذلك، على سبيل المثال:

  • ما هي الصناعة التي تعمل فيها؟
  • ما هي أنواع المنتجات والخدمات التي تبيعونها؟
  • هل أنت شركة مصنعة؟
  • أين تصنع منتجاتك؟ • أين تبيع منتجاتك؟
  • ما هي تكاليف العمالة الخاصة بك؟
  • ما هي الميزات البيئية الأخرى التي قد تكون مرتبطة بمقياس الاهتمام؟ (يعتمد هذا على المقياس.)
مخطط انسيابي ل Clarity AIعملية نموذج التقدير

عوامل التفاضل الرئيسية ل Clarity AIهي تقدير شدة المقياس، واستخدام بيانات الاستبعاد لاختبار الدقة التنبؤية للنموذج، وحساب كل من التأثيرات غير الخطية والتفاعلية. هذه ضرورية لتقدير بعض مقاييس الاستدامة مثل انبعاثات CO2.

تغطية البيانات من قبل PAI

الوصول إلى التقرير الكامل هنا

البحوث والرؤى

آخر الأخبار والمقالات

رؤى السوق

5 اتجاهات كلية تحدد ملامح الاستثمار المستدام في عام 2026

يتشكل عام 2026 ليكون عامًا حاسمًا للاستثمار المستدام. فمن انهيار التحالفات الرئيسية ذات صافي الصفر الصافي إلى إعادة الضبط التنظيمي في الاتحاد الأوروبي وظهور أطر جديدة لإعداد التقارير في جميع أنحاء العالم، يواجه المستثمرون اضطرابًا وفرصًا في آن واحد. في حين أن البيئة التنظيمية لا تزال غير مؤكدة، فإن السوق يتطور نحو مزيد من المساءلة والتقدم القابل للقياس والاستخدام الأكثر ذكاءً.

مناخ

هل التكيف مع المناخ هو التفويض التالي للمستثمرين المؤسسيين؟

كيف يمكن للمستثمرين دمج التكيف مع المناخ في الاستراتيجية، وإدارة المخاطر المادية، واستخدام الذكاء الاصطناعي للكشف عن فرص المرونة.

مناخ

من البيانات إلى القرار: كيف يُحدث الذكاء الاصطناعي تحولاً في ذكاء المخاطر المناخية للمستثمرين

اكتشف كيف يساعد ذكاء المخاطر المناخية القائم على الذكاء الاصطناعي المستثمرين على تحويل البيانات المجزأة إلى رؤى قابلة للتنفيذ تعمل على تحسين عملية اتخاذ القرار.